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Harris, Graham & Corrsin (1977) have measured the properties of the quasi-homo- 
geneous turbulence field induced by a large mean shear, and in analysing their measure- 
ments they neglect the diagonal components of the mean-field contribution to the 
pressure-strain correlation. Their measurements are re-analysed using the recom- 
mendations of Gibson & Launder (1978) for modelling this correlation, the imbalance 
between production and dissipation being allowed for by the algebraic modelling 
technique of Rodi (1976): the experimental data give strong support to Rodi’s basic 
assumption. 

The data suggest that the only substantial defect in the Gibson-Launder model is 
its failure to predict the anisotropy measured in the 23 plane normal to the mean flow. 
The longitudinal predictions are good, and those for the shear (12) component are 
much improved when measured values of the anisotropy are substituted into the 
calculation. This analysis does not suggest any clear need for a nonlinear representation 
of the pressure-strain correlation. However, the most general linear representation of 
the mean-field term is even more complex than the analysis of Launder, Reece & Rodi 
(1 975) would suggest: their model is disproved by an example. 

Attempts to deduce the dissipation directly from the experiments, rather than by 
energy balance, are not very successful. 

1. Introduction 
The experiment of Champagne, Harris & Corrsin (1970; hereinafter called CHC) on 

the nearly homogeneous turbulent field associated with quasi-uniform mean shear is 
of central importance in turbulence modelling, since the difficult pressure-strain term 
can be inferred directly from it. Harris et al. (1977; hereinafter called HGC) have 
extended this type of measurement to much higher rates of shear (48.0 s-l as compared 
to 12.4 s-l in the CHC experiments?). Their analysis suggests that there are serious 
defects in the standard model of Rotta (1951) for the pressure-strain term. This is 
surprising, since HGC show that their high-shear experiments are compatible with the 
low-shear experiments of CHC while Launder (Launder et al. 1975; Gibson & Launder 
1978) finds that the earlier CHC experiment is, by and large, compatible with the 
Rotta model. 

The aim of this paper is to re-analyse the high-shear experiments of HGC, using 

t HGC have issued an errata sheet which modifies some of the experimental numbers quoted 
in their paper. The modified values are used in the present paper. 
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Mean shear aU,/ax, = 48.0 8-1 
u; = (u:)* = 64cms-l 
U ;  = 40.4cms-1; u: = 49.5cms-1 
k = &(uiui) = 4096 cm2 
Iteynolds stress (- ulu,) = 1217 omz s-= 
mll = ui2 /k -% = 0.336 
m,, = u?/k - 3 = - 0.268 
m3, = u i a / k -  8 = - 0.068 

Im,,l = ( - u l u a > / k  = 0.297 
Centre-line velocity oc = 1240 cm 8-l 

U, d u p l d x ,  = 1.96 x lo4 cm2 s-3 
i f , d ~ ; 1 ~ / d x ~  = 0.88 x lo4 cm2 s-% 
oo dujz/dx, = 1.32 x lo4 cm2 
oc dk /dx l  = 2.08 x lo4 om2 s - ~  
gc d(  - u,u,)/dx, = 0.62 x lo4 om2 s - ~  

TABLE I. The basic data. 

algebraic modelling (Rodi 1976) to  account for the strong imbalance between pro- 
duction and dissipation: in particular, their over-rigorous interpretation of the Rotta 
model will be corrected. 

2. The experimental data 
This is taken from table 3 of HGC, as amended by the errata sheet (see table 1). The 

mean flow is in the x1 direction and the mean velocity gradient in the x,  direction. The 
mean and fluctuating velocities are denoted by Ui and ui. The data is taken ‘just a t  the 
downstream end of the test section’ (presumably x,/h = 11.0, though this is not 
stated) where ‘it appears that  the turbulence has attained an asymptotic state’. It 
was considered impractical to  analyse the evolution of the flow, interesting though 
this would be, since the flow properties are tabulated for this single value of xl/h 
only. 

An attempt is made in section ( c )  of the appendix to deduce the dissipation E directly 
from the experimental data. The results are so inaccurate that one cannot infer from 
them a reasonable value of PIE, the ratio of production to  dissipation. rz must therefore 
be inferred from the energy equation 

(1) 
- dk 

advection U ,  - = production P - dissipation E ,  
dx1 

2.08 = 5.84 - 3.76 (104~m2s-3); 

the production being computed from 

P = ( - u u ) - .  au1 

ax, 

(In the HGC paper, the dissipation is quoted as 3.28 x lo4 em2 s - ~ ;  this value is com- 
patible with equation ( I ) ,  and is clearly inferred from it. When u, is increased from 
44.0 s-l, as quoted in the paper, to 48.0 s-las quoted in theerratasheet, the dissipation 
as calculated from equation (1) is increased to 3.76 x lo4 em2 5-3: the value quoted in 
the errata sheet, 3.35 x lo4 em2 s-3, appears to be in error.) Throughout the paper we 
shall take 

E = 3.76 x 104cm2s-3; PIE = 1.55. (3) 

Strictly there is also a diffusion term in equation (I) .  Harris (see HGC) has measured 
the velocity contribution to this term, and finds it to be less than 3 yo of the advection. 
The estimate of the whole term, made in section ( 6 )  of the appendix with the aid of a 
model, is even smaller. The diffusion term is therefore ignored. 
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3. Models for the pressure-strain term 
Rotta (1951) showed that there were two contributions to  the pressure-strain term 

p being the fluctuating pressure. The first, 1,  is a triple correlation of the fluctuating 
velocity while the second, q5ij, 2 ,  is a product of the mean velocity gradient with a pair 
correlation of the fluctuating velocity. Most later workers have used Rotta's model for 
the first term 

and Gibson & Launder recommend 
c1 = 1.8. 

We shall follow this recommendation. 
However Lumley (1978, and see this paper for references to  his earlier publications) 

has shown that c1 cannot really be a constant. I n  principle a t  least, it must be a 
functional of invariants formed from the deviator of the stress tensor 

Chung & Adrian (1979) have based a turbulence model on these principles, but it does 
not seem to perform any better than the linear model of Launder et al. (1975), whose 
recommendations are followed in this paper with satisfactory results. 

The mean field term $ i j , 2  does not involve a closure problem and is amenable to 
direct calculation: nonetheless, there is much less agreement as to how this 'easier' 
term should be modelled. Following Crow (1968) and Naot, Shavit & Wolfshtein (1970)) 
Gibson & Launder recommend 

where 

and P = +Pii. (8) 

When the turbulence is homogeneous and isotropic, the model (6) is exact with 

c2 = 0.6. 

Following Launder et al. (1975)) Gibson & Launder recommend this value for general 
use, and we adopt this recommendation. I n  the simple geometry of the CHC and HGC 
experiments, the model (6) gives 

$11.2 = - % C 2 P ,  'I 
$22 ,2  = $33.2 = + ;c2 P ,  [ 

(9) 

where P is, as before, the rate of production of turbulent energy (see equation (2)).  
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HGC say that Rotta’s hypothesis makes the diagonal components of #ij,2 zero, and 
analyse their data :accordingly. It is indeed true that if the turbulence were strictly 
isotropic the mode) (6) would make the diagonal terms zero, because there could be no 
Reynolds stress and no production. But this is not what is assumed. Gibson & Launder 
formulate the model and calculate the constant c2 as though the turbulence were 
isotropic, and then apply the result quite generally. 

This is analogous to the use of a quasi-normal procedure to close the turbulence 
equations. If the turbulence field were truly normal, there could be no inertial transfer 
by the triple terms, but the assumption does not go so far: it merely states that  the 
quadruple and pair correlations are related as they would be if the turbulence were 
normal. 

Equations ( 5 )  and (6) make #22 equal to #33, and this implies (ui) = (u:). The 
experiments show that there is substantial anisotropy in the 23 plane normal to the 
mean flow, and Launder et al. have devised a more elaborate model for #ij,2 in an 
attempt to remove this discrepancy. They write 

which is correct if the flow is homogeneous, and they assume that the u%j are general 
linear functionals of the (u,.~,). There are five possible types of term and four kinetic 
constraints on them, so that the model contains one arbitrary parameter y2.t  For 
the simple flow situation of the CHC/HGC experiments, the Launder et al. model 
reduces to  * - 3y2 

# n , 2  = -P- i s  ’ I 

#33, is no longer equal to #22, and, with two independent parameters, the model can 
be adjusted to  give any desired degree of anisotropy. Launder et al. choose these para- 
meters to  produce agreement with the CHC experiments, and Gibson (private com- 
munication) has shown that this parameter set does not reproduce the anisotropy 
measured in the HGC experiment. (The Gibson & Launder model contains only one 
anisotropy parameter, 1 - c,/c,.) 

It is shown in the appendix that assumption of Launder et al. for the coefficients 
azi is not general enough. Since their model is fairly complex and does not have a 
secure theoretical basis, the model of Gibson & Launder will be used to analyse the 
HGC experiments. 

4. Energy imbalance and algebraic modelling 
Gibson & Launder assume that the flow is in local equilibrium, and that all trans- 

port (advective + diffusive) terms in the equations of motion are zero. I n  general, 
a flow with constant mean shear is not of this restricted type, and the turbulence level 

t Launder et al. call this parameter c2. In the present paper the symbol c2 is reserved for the 
quantity defined by equation (6),  in conformity with the notation of Gibson & Launder. 
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will increase or decrease as the field is advected downstream. Therefore it will generally 
be necessary to include the advection terms in the equation of motion: section ( b )  of the 
appendix shows that diffusion is negligible. 

Fortuitously the CHC experiment is very near to local equilibrium, but the data in 
$2 shows that this is far from true in the HGC experiment, where, from equation (3),  

P = 1.55s. 

This imbalance is too large to ignore: fortunately it can be allowed for, without making 
the analysis much more complicated, by using the algebraic modelling technique of 
Rodi (1976). (This procedure is advocated by, for instance, Meroney (1976).) 

The balance equation for (uiuj) may be written as 

T . .  23 = P.. - 6i.j + $ij (12) 
traneport produc%on dissipation pressure- 

strain 

and in particular, since $,i = 0, the transport of the turbulent energy k = &(uiui) is 
given by 

where P = &pzi, E = &ii 

(cf. equation (8)). The algebraic modelling assumption is that 

113) 

and it is so called because it eliminates the differentials implicit in T,,, leaving a set of 
algebraic relations; examples are given in the next section. 

Table 2 compares the actual measurements of 

with values of 

computed from the measured data. The agreement is impressive and it is clear that 
Rodi’s assumption (14) is a good approximation, at  least in the simple geometry of the 
HGC experiment. 

Component 
- d  u - ( U i U j )  

(4 ) 1.96 om2 s-* 2-09 cm2 s-* 

(4)  0.88 0.83 
<u:, 1.32 1.24 
( -%9-42> 0.62 0.62 

TABLE 2. Test of algebraic modelling. 
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Predicted 
Measured - Measured 

Quantity CHC PIS = 1 P / s  = 1.55 HGC 

rnll 0.27 0-296 0.352 0.336 
%a - 0.18 - 0.148 - 0.176 - 0.268 
mas - 0.09 - 0.148 - 0.176 - 0.068 
h 2 I  0.34 0.339 0.360 0.297 

TABLE 3. Comparison of measured and predicted anisotropy parameters. 

5. Prediction of the anisotropy 
In  the balance equation ( I  2 ) ,  we put 

E i j  = 

Tj is given by equation (14), while from (4) 

9 i j  = 9 i j .  1 + #ij,  27 

the two components being given by equations (5) and (6). Substituting and solving, 
we derive Rodi’s result 

Now 

so that 

Also 

P,, = Z P ,  P~~ = P~~ = 0, p12 = -U;2au,/ax2, 

4 (1  - c2) (PIE) 
mll=?j  C,+(P/&)- l ’  

m22 = m33 = - +m,,. (19) 

The constraint (19) is inevitable if the model of does not permit anisotropy in the 
23 plane. The relationship (20) is more striking, since it is independent of the model 
constants cl, c2 and of PIE:  it is, of course, related to the nature of the model. However 
the model does permit the individual mi, to vary with P / s :  they are no longer fixed, as 
they were in the original formulations of Launder et al. and Gibson & Launder. 

Table 3 compares the values of the anisotropy parameters mij ,  as measured in both 
experiments, with the values predicted by equation (17)  for the appropriate value of 
PIE. For the HGC experiment this is 1.55 (see equation ( 3 ) )  while we have taken 
PIE = 1 for the CHC experiment, in which the advection is too small to  measure. 
c1 and c2 have been put equal to 1.8 and 0.6 respectively, in accordance with Gibson & 
Launder’s recommendations. 

The prediction of m,, is good, and can be made almost perfect by raising c2 to 0.625. 
(However, Launder et al. read the CHC value of mll as 0.30, in agreement with the 
predicted value. Moreover, with this reading, the measured values of m,, and lm121 are 
compatible with equation (20).) This shows that the algebraic model can accommodate 
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, 
Experiment Experimental Experimental Theoretical 

CHC 0.34 0.32 0.34 
HGC 0-30 0.32 0.36 

TABLE 4. Correction of lrnl21 for anisotropy in the 23 plane. 

both experiments, and that the difference between them is adequately accounted for 
by the differing values of P / F .  

The simplified model of $i i ,2  cannot predict anisotropy in the 23 plane. Experi- 
mentally, this is found to increase with increasing strain rate : 

It seems quite likely that a better model of q5ii, 2, combined with algebraic modelling, 
could accommodate this variation. 

The figures for lm121 are at  first sight rather disconcerting, since the prediction is 
excellent at  the low strain rate and poor at  the high strain rate. However, it is probable 
that this anomaly is connected with the inherent failure to predict anisotropy in the 
23 plane. Putting ij = 12 in equation (17), we find 

from equation (18), or 

Im12l = [%mll$)4. 

Equation (20) is then derived by substituting for m22 from equation (19) and this 
introduces into the prediction of lm12\ the incorrect value U ~ ~ / U ; ~  = 1. We can get round 
this difficulty by using experimental values for m,, and uh2/k. (Since the predictions 
of m,, are good, it is immaterial whether we use experimental or theoretical values of 
this quantity.) The results of this exercise are shown in table 4. (The last column, 
which is taken from table 3, is included for comparison.) The anomaly has been more 
or less removed, and this makes it seem likely that a model of gij ,  less restricted than 
(6) would overcome the difficulty. (This better model would presumably alter the 
relationship (21). A t  present there is no way of knowing how this would affect lm121 .) 

HGC analyse their results by retaining the term $ii,l only. They find that the 
constant c1 is direction dependent, and in particular that it is large and variable in the 
3-direction. They also conclude (p. 677) ‘that the linear inter-component energy 
transfer hypothesis is unlikely to be even a fair approximation’. The present work 
makes it seem likely that these conclusions follow from the ignoring of $ij, 2, and the 
predictions are much improved when this term is modelled after the manner of Naot 
et al. (1970), as interpreted by Gibson & Launder (1978) (see equation (6)).  There is a 
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clear need to  account for the anisotropy in the 23 plane and the work of Launder et al. 
(1975) suggests (despite our criticisms) that this can be done within the framework of 
linear modelling. Only when this has been tried will i t  be possible to see whether the 
CHC and HGC experiments really do demand nonlinear modelling. 

6. The magnitudes of the pressure-strain components 
So far, attention has been concentrated on predicting the anisotropies, since these 

can be compared directly with measured quantities. It is also possible to compute the 
(non-zero) components of the pressure-strain tensor from the available experimental 
data, provided that the diffusion is ignored, and both CHC and HGC have done this. 
These components are of course derived rather than primary data, but they are 
instructive nonetheless. We shall now recalculate them from the HGC experiment only 
(the amendments on the errata sheet affect the values quoted in the paper) and will 
compare these with our recommended method of calculation. 

Substituting measured values into the individual components of the balance 
equation (1 2), and identifying the transport with the advection term 

we find the experimental values to be (in units of lo4 cm2 s - ~ )  

- - a  #,, = -2p+gs +uc-u;2 

q522 = 3s+uc-u;2 

dX1 
- 11.68 + 2.51 + 1.96 = - 7.21, 

- a  
dx2 

+ 2-51 + 0.88 = + 3.39, 

+ 2.51 + 1.32 = + 3.83, 

7.83-0.62 = +7*21. 

The values preducted by the recommended method of calculation using the measured 
anisotropies are listed below, with c1 = 1.8 and c2 = 0.6. The experimental values are 
in brackets, following the totals of the predicted values. The units are again lo4 c m 2 ~ - ~ ,  
and the formulae are taken from equations ( 5 )  and (9) : 

q511 = - Clemll - +c2 P 
- 2.27 - 4.67 = - 6.94 (Cf. - 7.2)) 

q5Z2 = - Clem22 + 3c2 P 

q533 = - c, em33 + $c2 P 

q512 = +c,elm,,l + c , ~ ~ ~ d U ~ / d x ~  

+ 1.81 + 2.34 = + 4.15 (cf. + 3.39)) 

+ 0*46+ 2.34 = + 2.80 (cf. + 3.83)) 

+ 2.01 + 4.70 = + 6.71 (cf. + 7-21). 
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The predictions of $,, and $12 are good, the errors being 4 % and 8 yo respectively. The 
sum #22 + #33 is also well predicted, as it must be by continuity, but the division into 
the two components is not good. This is obviously due to the failure to deal adequately 
with the anisotropy of $ i j ,  in the 23 plane. 

The magnitude of the $ii, (mean field) component is always greater than that of the 
$ii, , (triple) term. It is, therefore, not surprising that HGC find it difficult to analyse 
the $ii in terms of $ i j ,  , only. 

7. Conclusions 
The experiments of Harris et al. (1977) have been re-analysed using the representa- 

tion of the pressure-strain correlation recommended by Gibson & Launder (1978), 
together with the algebraic modelling method of Rodi (1976). It is found that: 

(1) Algebraic modelling is extremely good, although the flow is some way from local 
equilibrium ( P / c  = 1.55) and the flow properties may therefore be predicted without 
integrating differential transport equations. 

( 2 )  Prediction of the longitudinal anisotropy, and of the longitudinal component of 
#,,, is good. 

( 3 )  All other predictions are affected by the failure of the GL method to allow for 
the anisotropy of $ii, in the 23 plane. There is substantial evidence that this failure is 
responsible for the major part of the errors of prediction. 

(4) There is, therefore, a clear need to improve the Gibson & Launder model in this 
respect, perhaps along the lines suggested by Launder et al. (1975). However, it has 
been demonstrated that the postulate underlying the latter model for the mean field 
part of the pressure-strain correlation is too restricted. 

( 5 )  This analysis does not suggest any need to adopt a nonlinear model for the 
pressure-strain correlation. 

I am grateful to Dr M. M. Gibson of the Department of Mechanical Engineering a t  
Imperial College for the result cited in 9 3 ,  and for his careful checking of the manu- 
script. I am also indebted to the referees for helpful comments which have been 
incorporated into the paper. 

Appendix 
( a )  Estimation of the dissipation from experimental data 

The value of the dissipation used in the main text (c = 3.76 x lo4 om2 s - ~ ;  see equation 
( 3 ) )  is inferred from experimental measurements of the production and the advection. 
It can be inferred more directly from measured values of the longitudinal Taylor 
microscale A, or the longitudinal integral scale L, (we use HGC's definitions of these 
quantities). 

The variable B is related to A, by 

(A 1)  E =  - 20vk - - 2.5 x 104cm25-3 
A2, 

with A, = 0.70cm (from the errata sheet) and v = 0 - 1 5 ~ m ~ s - l .  This value, which 
agreeswiththat quotedinthepaper, is 34 yo too low. The discrepancy is not surprising, 
in view of the scatter in A, shown in figure 4 of HGC. 
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The same figure shows that, as one would expect, L, can be measured much more 
accurately: however, to infer E from this quantity, one must know something about the 
spectrum. Now L, is given by 

?T 
Ll = ~ $ l ( O ) >  

where $ l (k l )  is the one-sided one-dimensional longitudinal spectrum. The simplest 
possible model for this function, which has the right form in the inertial range, is 

k, being an adjustable parameter and KO the Kolmogorov constant. This model gives 

ui2 = lorn y5,(kl)dk, = &Ko(e/k0)8 
~~ 

which we shall modify t o  
u;' = &pKo(e /k , ) j ,  p < 1, 

since the model (A 3) must overestimate the area under 4,. It is then easy to show that 

with KO = 1.5, while the ratio of k )  to  u; is taken from table I. HGC give a similar 
formula, with a multiplying factor (5)% = 0.544 (and p = 1). With p = 1 and 
L, = 5-3 cm (from the errata sheet) equation (A 5) gives E = 2.5 x lo4 cm2 s - ~  in precise 
agreement with equation (A I ) ,  but this must be fortuitous. 

HGC do not give spectra, and an attempt has therefore been made to estimate p 
from figure 19 of CHC, which is a plot of $ = $ l ( k l ) / $ l ( 0 )  as a function of s = yk,, 
where 7 = (v3/e)* is the Kolmogorov length scale (0.0346 cm in the CHC experiment). 
The experimental curve is quite well approximated by 

$b) = 1 for s < s2 = 5.5 x 

(A 6 )  a s-1.55 for s2 < s < s3 = 0.2, 

a s-5.5 for s3 < s, 

giving N = Jom $ds = 0.0163. (A 71 

The curve is less well approximated by a model of the form (A 3) but, if the fitting is 
done a t  the knee a t  s = s3, we find 

Nmodel = 0.0183, 

pc,, = N/Nmodel = 0.891. implying 

If we assume that this value, derived from the CHC experiment, is also applicable to 
the HGC experiment (which does not seem unreasonable) then we find 

e = 3-3 x lO4~m~s-3, 

which is only 11 yo below the value (3) inferred from energy balance. 

from equation (A 2) that  
This seems satisfactory, but the calculation does not really hang together. It follows 

L, = ny/2N = 3-3cm, 
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N being taken from equation (A 7)  (7 is quoted above). A typical value for L, in the 
CHC experiment is 4.6 ern (see figure 17 of their paper) and it is not obvious how the 
discrepancy has arisen. This second method of estimating E seems promising, but it 
needs more work. 

(b)  Estimate of the diffusion term in the energy equation 

Daly & Harlow (1970) suggest that the contribution of diffusion to the transport term 
Tij in equation (1 2 )  should be modelled by 

The notation is that of Launder et al., who recommend c; = 0.25. With this mode1,the 
leading contribution to the diffusion term in the scalar energy equation is 

if we use algebraic modelling and ignore deldx,. Using the values quoted in section 2, 
we find that this term is approximately 

15 ~ m ~ s - ~  

while the other terms in equation ( 1 2 )  (or equation (1)) are all greater than lo4 em2 s - ~ .  
Unless the Daly-Harlow model is utterly wrong, diffusion is indeed negligible. 

(c) Disproof of the Launder et  al. model for 

If the flow field is homogeneous, the mean field component q5ij,20f the pressure-strain 
correlation is given by equation (10) where, in wavenumber space, 

q,,(n) being the Fourier transform with respect to r of (ui(x) u,,(x + r)). (n is used to 
denote wavenumber since k has been pre-empted for the turbulent kinetic energy.) If 
the field is also isotropic, then 

(see, e.g., Leslie 1973, chapter 2 ) ,  where 

lom E ( n )  d n  = k (the turbulent kinetic energy). 

Substituting from (A 8) into (A 9), we find 

(A 10) 
2k 

a r  = (4Szj Si, - Sij S,, - Si, S m j )  15, 

which with equation (10) gives equation (6), with c2 = 2 = 0.6 as stated in the main 
text. 

Launder et al. (1 975) suggest that, when the field is not isotropic, a'$ will be the most 
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general linear functional of the stress tensor (u,ub). They show, taking account of the 
four kinematic constraints on these coefficients, that 

4+50y2 S .S . + w ( S m l S i j + S r n i S i r )  k; ( A l l )  1 55 ma 13 
+ [- 

y2 is an adjustable parameter for which Launder et al. recommend the value 0.4. 
However, they recommend c1 = 1.5 while we have used Gibson & Launder's recom- 
mendation c1 = 1.8. 

For a simple shear flow, equations (10) and (A 11) reduce to equations (11) of the 
main te'xt. With yz = 0.4 and c1 taken as either 1.5 or 1.8, the predictions of equation 
(11) are distinctly inferior to those of the simple model (6). It will now be shown that 
this is no accident and that the assumption underlying equation (A 11) is incorrect. 
Any disproof will suffice, and we shall give it for an axisymmetric (homogeneous) flow, 
since Herring (1 974) has worked out the details of how such a flow should be represented. 

He finds that the correlation tensor for such a flow may be written 

Here 

a being the unit vector along the symmetry axis; ef(n) and ek(n) are the eigenvectors 
of qnLi(n), e(p)  is the Legendre polynomial of order s; the @:(n), which depend on 
scalar n only, are the eigenvalues of the correlation function. There must, of course, be 
three eigenvectors and three eigenvalues. The third eigenvector is the unit vector 
parallel to n. In a representation in which the 1-direction is along a, 

e3(n) = (p, (1 -p2)t cos $, (1 -p2)Q sin $), (A 14) 

$ being an angle variable in the 23 plane perpendicular to a: by continuity, the corre- 
sponding eigenvalue is zero. 

Herring takes el and e2 to be in the directions a A n and a A (a A n): in the repre- 
sentation 

el(n) = (O,sin$, - cos$), 

e2(n) = ( - (1 -p2)&,p cos $,p sin $). (A 16) 

Since the angular dependence of the tensor (A 12) is on p only, it  must be axisymmetric: 
in a more general tensor, the Legendre polynomials will be replaced by zonal harmonics. 

From (A 14), (A 15) and (A 16) 
3 

A = l  
e i e ?  = Sim 

and since ek = nm/n by definition, i t  follows that 

2 

A = l  
2 eke: = qni(n) 

(see Leslie 1973). Thus the usual isotropic tensor is generated by 

@A(n) = @Do"(%) = q(n); @(n)  = o for s 2 I .  
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The simplest anisotropic tensor is generated by putting 

@i p 0, rest zero, 
and this gives 

(u,ui) = qmi(n)d3n = $(Sm2Siz+Sm3Si3)  F i  where k",, 1 = /om,4mz@A(n) an. s 
Thus (ui) = (u:) = k (kinetic energy) = i F i ,  rest zero. (A 18) 

From (A 17)) (A 12) and (A 8) 

For example 

and similarly a;: = ik, a;: = k. (A211 

Now, when we substitute the tensorial form (A 18) into the Launder et al. constitutive 
relation, we find 

? 46+25y2 
55 

There is no value of y2 which will bring all three components of (A 22) into agreement 
with (A 20) and (A 21) (whence the 2s in (A 22)), and this disproves Launder et al.'s 
conjecture. 

The cause of the difficulty is clear. The tensor (u,ui) is determined by the zero-order 
angular components Po(p) only, whereas higher angular harmonics enter into the 
coefficients aCi. This point is made very clearly if we replace (A 17) by 

@i(n), @l(n) p 0, rest zero. 

This change leaves (A 18) and therefore (A 22) unaffected, but i t  does alter the a?. 
A referee has pointed out that Lumley (1978) has disproved the Launder et al. model 

for $ i j , 2 ,  using invariance arguments. His reasoning must be related to  that given 
above, but the connexion is not immediately obvious. 
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